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_&&a&-A general-purpose expression developed previously for predicting external natural convection 
heat transfer from ~reedimensional bodies of arbitrary shape is extended to cover a wider range of Prandtl 
numbers: 0.71 $ Pr < 2000. The predictions from this expression are compared with the experimental 
data of several researchers over the range IO6 < Ra < 10” for Prandtl numbers of approximately 10 and 
2000. The agreement between the predictions and the experimental data is very good with r.m.s. differences 

of less than 10% in all cases. 

INTRODUCTION 

EXTERNAL natural convection heat transfer has been 
of interest for many years. Many researchers focused 
on the heat transfer from spheres and long circular 
cylinders; only a few paid attention to other shapes. 
Among the latter are Astrauskas [l], Weber et al. [2], 
Chamberlain et al. [3], Sparrow and Stretton [4] 
and Hassani and Hollands (51. Their combined data 
covered a Prandtl number range of 0.71 < Pr < 2000. 
Astrauskas [I] and Weber et al. [2] performed natural 
convection mass transfer measurements by the 
electrochemical method (Pr x 2000) for spheres, 
cones, tetrahedrons, cubes and disks. Chamberlain 
et al. [3] and Hassani and Hollands [5], using air 
(Pr z 0.71), covered a variety of shapes such as cubes, 
spheres, bispheres, oblate and prolate spheroids, short 
circular cylinders and square and circular disks. Spar- 
row and Stretton [4] used water (Pr FZ 6) and air for 
their measurements of heat transfer from cubes at 
different orientations. Except for the data of Weber 
et al. [2], which covers a range of lo* < R’a < lOI’, 
the remaining data are for Ra < log. 

The prediction of heat transfer from these bodies is 
for the most part limited to empirical correlations 
suggested by researchers. These correlations are them- 
selves restricted to certain geometries or range of 
Rayleigh numbers. Recently, however, Hassani and 
Hollands [S], by simplifying the method of Raithby 
and Hollands 16, 7], introduced a general-purpose 
expression for predicting heat transfer from three- 
dimensional bodies of arbitrary shape. They showed 
that a good agreement between their expression and 
the available experimental data of various shapes 
existed for Pr z 0.71. The present work extends the 
applicability of their expression to Prandtl numbers 
other than 0.71, namely 0.71 6 Pr < 2000 and com- 
pares the resulting predictions with the available 
experimental data having Pr > 0.71. 

PREDICTIONS 

The method for predicting external natural con- 
vection heat transfer from three-dimensional shapes 
outlined in ref. [S] resulted in 

Nu,/* = [[(c, Rag4)” + (et Rug’)“]“‘” + (Nu,,J,$] lin 

(1) 

where the exponents n and m are given by 

n = 1.26- P&&J , l.o 

9,/(1 -4.79v2j3/A) 1 (2) 
max 

and 

m = 2.5-k 12.0exp(- 13](?tRRa#12-0.5]) (3) 

(see Nomenclature for meaning of symbols). The 
coefficients c, and ct of equation (1) are functions of 
Prandtl number. The expression for the mean laminar 
coefficient c, is 

0.671 

Cl = [I +(0.492/Pr)9”6]4’p’ 

The second coefficient et depends on the body shape 
as well as Prandtl number. It is defined as 

- JA et = c+- 

where c* is the mean turbulent coefficient given by 

where C,(4) is the locai turbulent coefficient, given as 
a function of the local surface angle Cp in ref. [7J. 

To provide a simple method for calculating et,, 
Hassani and Hollands [5] approximate the function 
C,(#) by a function judiciously chosen so that the 
integral (equation (6)) required for the evaluation of 
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NOMENCLATURE 

coefficient defined by equation (9) P 
heat transfer surface area of body [m’] 
horizontal downward facing surface of PC=) 
a heated body. or horizontal upward 
facing surface of a cooled body [ml] PU 
coefficient delined by equation (10) Pr* 

function of Pr given by equation t4) 
local turbulent coefficient, a function of Q 
Pr and (p (see ref. [7]) R 

average value of C, over body. equation 

16) Ra, 
c’,J’AiH 

coefficient defined by equation (I 1) AT 
characteristic length, (z$‘) ij3 [m] 
thermal conductivity of fluid f’ 
[Wm -‘Km ‘1 Z, 
side dimension of tetrahedron or cube [m] 
longest straight line passing through the 
. ___ 

perimeter averaged over the total height 1 
of the body, (l/zr)f’6 P(z) dz [m] 
perimeter of planform of body at I 

elevation z [m] 
Prandtl number of fluid I 

function of Prandtl number given by I 

equation ( 12) I 
convective heat transfer from body [W] 
radius of sphere, base of cone or circular i 
disk [m] I 

Rayleigh number based on H, 
_&A TH ‘/vci I 

temperature difference between body / 

and fluid far from body [K] I 

volume of body [m “1 I 
total height of body [ml. 

/ 

I 

body lml Greek symbols 
exponent given by equation (3) 
exponent given as a function of body 
shape, equation (2) 
Nusselt number based on JA. 

QJAIAATX- 

conduction Nusselt number based on 
-\/‘.4. i.e. limit of Nu, ( as Ra --f 0 

thermal diffusivity of fluid [m’ s- ‘1 
volumetric coefficient of thermal 
expansion for fluid [K ‘] 
kinematic viscosity [m2 s- ‘1 
angle measured between the vertical 
direction and the local point on the 
surface of the body. 

/ 

c, would be tractable and yield simple results. This 
approximate function for C, is 

C, = a+hsin(~)fecos(~), for -7cj2 < 4 < 7c/2 

(7) 

C’, = 0, for 4 = -n/2. (8) 

The coefficients a, h and e are to be chosen to best fit 
the curves given in ref. [7] for a specified Prandtl 
number. Hassani and Hoilands [5] evaluated a, h and 
e for Pr 2 0.71 and obtained: a = 0.098, h = 0.033 
and e = 0.008. 

To establish a more general relationship between 
the coefficients a, h and e and Pr, the above procedure 
was. in the present study, repeated for Prandtl num- 
bers ranging from 0.7 1 to 2000, using the fitting pro- 
cedure detailed in ref. [S] for Pr z 0.71. The co- 
efficients a, h and c obtained in this way are listed in 
Table 1. The following equations approximate the 
values in the table and permit easy inte~oIation : 

and 

(I = 0.0972 (9) 

b = -0.06Pr”+0.0815 (10) 

L’ = 0.08 Pr*-o.0548-6 x lo- fJ Pr (11) 

where Pr” is given by 

pr* = -__py(‘-2?-__ _... 
(1+0&l Pro8’)‘-“‘ 

Integrating equation (6) results in an expression for 
c, in terms of purely geometric properties of the body, 
and of a, b and e [S] 

where Ah is the horizonta1 downward facing surface 
area for a heated body or horizontal upward facing 
surface area for a cooled body. Using equation (I) 
with proper coefficients obtained from equations (4) 
and (g&(13), one can predict the heat transfer from 

Table I Coeflicients of equation (I 3) 

Pr (1 h r 

0.71 0.0980 0.0330 0.0080 
1.0 0.0980 0.0314 0.0108 
2.0 0.0981 0.0293 0.0147 
4.0 0.0981 0.0288 0.0159 
6.0 0.0981 0.0289 0.0154 

50 0.0973 0.0354 0.0042 
100 0.0970 0.0384 -0.0003 
500 0.0967 0.0482 -0.0107 

1000 0.0965 0.0518 -0.0159 
2000 0.0964 0.0535 -0.0255 

-..--_ 
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Table 2. Coefficients of equation (1) 

Body shape Pr 

sphere 0.71 0.515 0.101 3.545 
sphere 5.8 0.608 0.107 3.545 
sphere 6.5 0.611 0.107 3.545 
sphere 14.0 0.630 0.105 3.545 
sphere 1800 0.668 0.076 3.545 
cube, face up 6.0 0.609 0.094 3.388 
cube, face up 2000 0.668 0.068 3.388 
cube, edge up 0.71 0.515 0.100 3.388 
cube, edge up 6.0 0.609 0.106 3.388 
cube, edge up 2000 0.668 0.071 3.388 
cube, vertex up 6.0 0.609 0.107 3.388 
cube, vertex up 2000 0.668 0.069 3.388 
cone, apex up 2000 0.668 0.077 3.510 
cone, apex down 2000 0.668 0.088 3.510 
tetrahedron (pointing up) 2000 0.668 0.071 3.454 
tetrahedron (pointing down) 2000 0.668 0.082 3.454 
circular disk (horizontal) 2000 0.668 0.112 3.330 

1.0 3.652 R 
1.0 3.652 R 
1.0 3.652 R 
1.0 3.652 R 
1.0 3.652 R 
1.11 2.5201 
1.11 2.5201 
1.11 2.545 I 
1.11 2.545 I 
1.11 2.545 I 
1.11 2.548 I 
1.11 2.548 1 
1.04 3.327 R 
1.04 3.327 R 
1.18 1.225 I 
1.18 1.225 I 
1.17 1.740R 

a three-dimensional shape in an infinite medium for a 
Prandtl number range of 0.71 < Pr < 2000. 

COMPARISON WITH EXPERIMENTAL DATA 

The predicted results of equation (1) were com- 
pared with the experimental data of Weber et al. 
[2] and Astrauskas [l] for Pr = 2000 and various 
geometries, such as cubes, tetrahedrons, cones and 
circular disks. The coefficients for these geometries at 
Pr x 2000 are listed in Table 2 and the results are 
plotted in Figs. l-4. The agreement is very good- 
r.m.s. differences of less than 10% are observed in all 
cases. 

The experimental data of Sparrow and Stretton [4] 
for various orientations of the cube for Pr z 6.0, as 
well as the predictions of equation (l), are shown in 
Fig. 4. The comparison between the predictions and 
the data show r.m.s. differences of less than 7% for 
all orientations. The coefficients of equation (1) for 
these orientations and Pr x 6 are listed in Table 2. 

At high Rayleigh numbers where the turbulence 
becomes important, the dominant term in equation 
(1) is 6, Ru$‘, in which ct is a function of Prandtl 
number. For a given shape this latter function is found 
to have the following characteristics, illustrated in 
Table 2 : 

Et (Pr x 2000) < et (Pr c 0.71) < c, (Pr w 6). 

For example for the cube (edge up), et for Pr z 6 is 
approximately 6% higher than the r?t for Pr z 0.71 
and almost 30% higher than the c?~ for Pr x 2000. A 

similar trend can be observed for ct for a sphere. The 
magnitude of the effect of the Prandtl number, shows 
up in the predictions shown in Figs. 5 and 6, and to 
some extent, in the experimental data. Figure 5 shows 
the experimental data of several workers for a sphere 
for a Prandtl number range of 0.71 ,< Pr < 1800. The 
data of Schmidt [8] using alcohol and water 
(5.8 < Pr < 14) show very good agreement with pre- 
dictions of equation (l), the r.m.s. difference between 
the experimental data and the predictions being less 

1000, 

I A Tetrahedron 

FIG. 1. Comparison of the experimental data and the predictions for a tetrahedron 
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- Eq.(l),Pr=2000 

IO’ IO8 IO3 10’0 IO” lOI 

Ra, 
FIG. 2. Comparison of the experimental data and the predictions for a cone 

FIG. 3. Comparison of the experimental data and the predictions for a horizontal circular disk. 

Cube, Vertex up 

Cube , Face up / -IO 

100 - 0 

W.-h” 
&w.*= 

Pr=2ccO 
( 

o Weber et al.(l984) 

IO - 
- Equation ( I) 

Pre6.0 
A Sparrow 8 Stretton (1985) 

i, -- Equation ( I 1 
I I I I 

IO6 IO’ IO8 IO3 10’0 IO” lOI 

RaH 

FIG. 4. Comparison of the experimental data and the predictions for a cube in three different orientations. 

than 8%. The data of Schutz [lo] for Pr r 1800 is 
in good agreement with equation (1) with an r.m.s. 
difference of less than 7%. But the experimental data 
of Kutateladze [9] for Pr z 0.71 are generally higher 
than the predicted results with an r.m.s. difference of 
15%. So the experimental data do not unambiguously 
show the expected trend with Pr ; Kutateladze’s data 
for air almost coincides with Schmidt’s data for water. 
It may be that the error, involved in the experiments 

of Kutateladze [9] causes his data to be consistently 
high (see Churchill [l l] for a detailed study for 
spheres). Figure 6 shows the experimental data of 
Weber et al. [2], Sparrow and Stretton [4], and 
Chamberlain er al. [3] for the cube (edge up) for 
different Prandtl numbers. The agreement between 
the experimental data and the predictions of equation 
(1) is very good for all cases, with r.m.s. differences 
of less than 7%. Unfortunately, however, the exper- 
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1000 

As 
z 

100 

Kutateladze ( 1963) 

FIG. 5. Comparison of the experimental data and the predictions for a sphere. 

1000 - Cube, Edge UP 

o Weber et al. (1964) 
--- Equation ( I) 

Pr = 6.0 
{ 

0 Sparrow 8 Strettan (1965) 
-.- Equation (I ) 

Pr * 0.71 
( 

c, Chamberlain et al. (1985) 
- Equation ( I ) 

I I I I I 1 J 

IO2 IO4 106 108 lOi lOI lOI 

FIG. 6. The effect of Prandtl number on heat transfer from a cube with its edge up. 

imental ranges of the Rayleigh number are not 
sufficient to properly evaluate the agreement with the 

expected trend. 

CONCLUSIONS 

The equation developed by Hassani and Hollands 
[S] from the earlier work of Raithby and Hollands 
has been extended to cover a wide range of Prandtl 
numbers : 0.71 6 Pr < 2000. The predictions of this 
correlation had already been verified by Hassani and 
Hollands for various shapes over a Rayleigh number 
range of 10 < Ru < lo9 for Pr z 0.71. This work has 

compared the predictions with the experimental data 
of Astrauskas [I], Weber et al. [2], Sparrow and 
Stretton [4], and Schmidt [8] for various geometries 
over IO6 c Ra < lOI for Pr % 2000 and 5.8 < Pr 

< 14. The agreement .between the predictions 
and the experimental data is very good and r.m.s. 
differences of less than 10% are observed in all cases. 
A need for more experimental data at intermediate 

Prandtl numbers and high Rayleigh numbers is 

indicated. 
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EFFET DIJ NOMBRE DE PRANDTL SUR LA CONVECTION THERMIQUE 
NATURELLE EXTERNE AUTOUR DE CORPS TRIDIMENSIO~ELS 

IRREGULIERS 

R&u&-Une formule developpee anterieurement pour predire le transfert de chaleur par convection 
naturelle amour de corps tridimensionnels de forme arbitraire est &endue pour couvrir un plus large 
domaine de nombre de PrandtlO,71 < Pr < 2000. Les predictions de ces expressions sont comparees aux 
don&es experimentales de piusieurs auteurs dans le domaine lo6 < Ru < 10i3, pour des nombres de 
Prandtl de IO a 2000. L’accord est tms bon avec des moyennes quadratjques de diffirences inferieures B 

10% dans tous les cas. 

DER EINFLUSS DER PRANDTL-ZAHL AUF DEN W~RME~BERGANG AN DER 
AUSSENSEITE EINES UNREGELM~SSIG~N DREIDIMENSIONAL~N KdRPERS 

Zusanunenfassung-In der vorliegenden Arbeit wird ein kiirzlich entwickelter allgemeiner Ausdruck filr die 
Berechnung des Warmeiibergangs durch nattirliche Konvektion an der AuBensei‘ie eines dreidimensionalen 
Kiirpers beliebiger Form so erweitert, daI.3 nun Prandtl-Zahlen zwischen 0.71 und 2000 abeedeckt werden 
kiinnen. Die Ergebnisse derartiger Berechnungen werden mit ex~~rne~te~en Daten &terschiedlicher 
Herkunft im Bereich 10’ < Ru < lOI und 10 < Pr < 2000 verglichen. Die ~reinstimmung zwischen 

Me& und Rechenwerten ist sehr gut, die r.m.s.-Abweichung ist in allen Fallen kleiner als 10%. 

3~H~HHE YHCJIA HPAHAT~~ HA BH~H~~ C~~~OKOHBEKTHBHbI~ 
TBHJIOHEPEHDC OT TPEXMEPHMX TEJI HE~PAB~bHO~ QpoPMbI 

Amaommn-IIpemoxeHHoe patree ebxpaateuue ruls pacsera mremxero CB~~~J~IOKOHB~KT~IBHO~~ Ten- 

nonepetioca or rpex~eP= Ten nposisnonbsroi (hop~bl 060611raercn Ha 6ofiee uniporalr matrasou 
*xcea HparrArnm 0,71 < Pr Q 2000. Hony~ermbie c no~oIIIbro rroro Bbtpa~eimn pwynbTaTbr cpaeaw 
B~CXC3K~~~~e~~~~~ m2KosKrix ~~~0~T~e~ 3 mmpme siicen P3nea OT 

lo6 ~0 1013, CooTne’rmByEo~eM rrp~6~m3~re~~o R3MeHeHmo 9ricna Hparr&~nll OT 10 ~0 2000. c!pex- 
HeKBii&XlT&i'lHbIe OTKJlOHeHHR pWWTiibur 3HZl'teli~ OT 3KCIl~HMeHTMMibIx Bo BCEX CJlyWMX WC- 


