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Abstract—A general-purpose expression developed previously for predicting external natural convection

heat transfer from three-dimensional bodies of arbitrary shape is extended to cover a wider range of Prandtl

numbers: 0.71 < Pr < 2000, The predictions from this expression are compared with the experimental

data of several researchers over the range 10° < Ra < 10'3 for Prandtl numbers of approximately 10 and

2000. The agreement between the predictions and the experimental data is very good with r.m.s. differences
of less than 10% in all cases.

INTRODUCTION

EXTERNAL natural convection heat transfer has been
of interest for many years. Many researchers focused
on the heat transfer from spheres and long circular
cylinders; only a few paid attention to other shapes.
Among the latter are Astrauskas [1], Weber et al. [2],
Chamberlain ez al. [3], Sparrow and Stretton {4]
and Hassani and Hollands [5]. Their combined data
covered a Prandtl number range of 0.71 < Pr < 2000.
Astrauskas [1] and Weber et al. [2] performed natural
convection mass transfer measurements by the
electrochemical method (Pra~ 2000) for spheres,
cones, tetrahedrons, cubes and disks. Chamberlain
et al. [3] and Hassani and Hollands [5], using air
(Pr = 0.71), covered a variety of shapes such as cubes,
spheres, bispheres, oblate and prolate spheroids, short
circular cylinders and square and circular disks. Spar-
row and Stretton [4] used water (Pr & 6} and air for
their measurements of heat transfer from cubes at
different orientations. Except for the data of Weber
et al. [2], which covers a range of 10° < Rg < 10'2,
the remaining data are for Ra < 10°.

The prediction of heat transfer from these bodies is
for the most part limited to empirical correlations
suggested by researchers. These correlations are them-
selves restricted to certain geometries or range of
Rayleigh numbers. Recently, however, Hassani and
Hollands [5], by simplifying the method of Raithby
and Hollands [6, 7], introduced a general-purpose
expression for predicting heat transfer from three-
dimnensional bodies of arbitrary shape. They showed
that a good agreement between their expression and
the available experimental data of various shapes
existed for Pr~ 0.71. The present work extends the
applicability of their expression to Prandtl numbers
other than 0.71, namely 0.71 < Pr < 2000 and com-
pares the resulting predictions with the available
experimental data having Pr > 0.71.

PREDICTIONS

The method for predicting external natural con-
vection heat transfer from three-dimensional shapes
outlined in ref. [5] resulted in
Nuy, = [I(C, Ra*y" +(C. Raif*)"T"™ + (Nuey 1)1

1

where the exponents » and m are given by

e @=VAILY) }
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and
m=2.5+120exp(—13|C, Ra}{'*—0.5)) (3)

(see Nomenclature for meaning of symbols). The
coefficients C, and C, of equation (1) are functions of
Prandt! number. The expression for the mean laminar
coefficient C, is

o 0.671
= [1+(0.492/Pry*16)4°" 4

The second coefficient €, depends on the body shape
as well as Prandtl number. It is defined as

- |
=edt ©)
where C, is the mean turbulent coefficient given by

i
ct = ZL Ct(¢) d4 (6)

where C(¢) is the local turbulent coefficient, given as
a function of the local surface angle ¢ in ref. [7].

To provide a simple method for calculating C,,
Hassani and Hollands [5] approximated the function
C{¢) by a function judiciously chosen so that the
integral (equation (6)) required for the evaluation of
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NOMENCLATURE —’
u coeflicient defined by equation (9) P perimeter averaged over the total height
A heat transfer surface area of body [m-] of the body, (1/z) Jof P(z)dz [m]
Ay, horizontal downward facing surface of P(z)  perimeter of planform of body at
a heated body. or horizontal upward elevation z [m]
facing surface of a cooled body [m?} Pr Prandtl number of fluid
b coeflicient defined by equation (10) Pr* function of Prandt! number given by
G function of Pr given by equation {4) equation (12)
C, local turbulent coefficient, a function of 0 convective heat transfer from body [W]
Prand ¢ (see ref. [7]) R radius of sphere, base of cone or circular
<, average value of C, over body. equation disk [m] i
(6) Ra,,  Rayleigh number based on H,
¢ CjalH GBATH va
e coefficient defined by equation (11) AT temperature difference between body
H characteristic length, (z;,#%) " [m] and fluid far from body [K]
k thermal conductivity of fluid v volume of body [m?]
[Wm 'K z total height of body [m]. ;
! side dimension of tetrahedron or cube [m)] 3
L., longest straight line passing through the
body [m] Greek symbols 1
m exponent given by equation (3) o thermal diffusivity of fluid [m~ s~ ]
a exponent given as a function of body B volumetric coefficient of thermal
shape, cquation (2) expansion for fluid [K ™1}
Nu, , Nusselt number based on /4, v kinematic viscosity [m? s~ ']
O AIAATK ¢ angle measured between the vertical
Nu, ., conduction Nusselt number based on direction and the local point on the
A ie. limit of Nu;, as Ra— 0 surface of the body.

C, would be tractable and yield simple results. This
approximate function for C, is

C, = a+bsin{¢)+ecos{p), for—mn/2 << n2

0
C, =0, for¢g=—n/2. &

The coefficients a, » and e are to be chosen to best fit
the curves given in ref. [7] for a specified Prandtl
number. Hassani and Hollands [5] evaluated a, » and
e for Pr~0.71 and obtained: a = 0.098, b = 0.033
and e = 0.008.

To establish a more general relationship between
the coefficients a, b and e and Pr, the above procedure
was, in the present study, repeated for Prandil num-
bers ranging from 0.71 to 2000, using the fitting pro-
cedure detailed in ref. [5] for Pr~ 0.71. The co-
efficients a, b and ¢ obtained in this way are listed in
Table 1. The following equations approximate the
values in the table and permit easy interpolation:

a = 0.0972 %
b= —0.06 Pr*4+0.0815 (10

and
=008 Pr*—0.0548—6x10"° Pr an

where Pr* is given by

PV 0.22
R o "
P =soe pomyes (1)
Integrating equation (6) results in an expression for
C,in terms of purely geometric properties of the body.,
and of a, b and ¢ [5]

A P
- 3
y (13)

Co=a+(b—a)~ +e5f4v-
where A, is the horizontal downward facing surface
area for a heated body or horizontal upward facing
surface area for a cooled body. Using equation (1)

with proper coefficients obtained from equations (4)
and (9)-(13), one can predict the heat transfer from

Table 1. Coefficients of equation (13}

Pr 7 b e
0.71 0.0980 0.0330 0.0080
1.0 0.0980 0.0314 0.0108
2.0 0.0981 0.0293 0.0147
4,0 0.0981 0.0288 0.0159
6.0 0.0981 0.0289 0.0154

50 0.0973 0.0354 0.0042

100 0.0970 0.0384 —0.0003
500 0.0967 0.0482 —0.0107
1000 0.0965 0.0518 -0.0159
2000 0.0964 0.0535 —0.0255




Prandtl number effect on external natural convection heat transfer from irregular three-dimensional bodies

2077

Table 2. Coefficients of equation (1)

Body shape Pr (o] C, Nu, 4 n H
sphere 071 0515 0.101 3.545 1.0 3.652R
sphere 5.8 0.608 0.107 3.545 1.0 3.652R
sphere 6.5 0.611 0.107 3.545 1.0 3.652R
sphere 14.0 0.630 0.105 3.545 1.0 3.652R
sphere 1800 0.668 0.076 3.545 1.0 3.652R
cube, face up 6.0 0.609 0.094 3.388 1.11 2.5201
cube, face up 2000 0.668 0.068 3.388 1.11 2.5201
cube, edge up 0.71  0.515 0.100 3.388 1.11 2.5451
cube, edge up 6.0 0.609 0.106 3.388 1.11 2.5451
cube, edge up 2000 0.668 0.071 3.388 1.11 2.5451
cube, vertex up 6.0 0.609 0.107 3.388 1.11 2.5481
cube, vertex up 2000 0.668 0.069 3.388 L.11 2.5481
cone, apex up 2000 0.668 0.077 3.510 1.04 3.327R
cone, apex down 2000 0.668 0.088 3.510 1.04 3.327R
tetrahedron (pointing up) 2000 0.668 0.071 3.454 1.18 1.2251
tetrahedron (pointing down) 2000 0.668 0.082 3.454 1.18 1.225/
circular disk (horizontal) 2000 0.668 0.112 3.330 L.17 1.740 R

a three-dimensional shape in an infinite medium for a
Prandtl number range of 0.71 < Pr < 2000.

COMPARISON WITH EXPERIMENTAL DATA

The predicted results of equation (1) were com-
pared with the experimental data of Weber et al.
[2] and Astrauskas [1] for Pr =~ 2000 and various
geometries, such as cubes, tetrahedrons, cones and
circular disks. The coefficients for these geometries at
Pr ~ 2000 are listed in Table 2 and the results are
plotted in Figs. 1-4. The agreement is very good—
r.m.s. differences of less than 10% are observed in all
cases.

The experimental data of Sparrow and Stretton [4]
for various orientations of the cube for Pr ~ 6.0, as
well as the predictions of equation (1), are shown in
Fig. 4. The comparison between the predictions and
the data show r.m.s. differences of less than 7% for
all orientations. The coefficients of equation (1) for
these orientations and Pr = 6 are listed in Table 2.

At high Rayleigh numbers where the turbulence
becomes important, the dominant term in equation
(1) is €, Ra)?, in which C, is a function of Prandtl
number. For a given shape this latter function is found
to have the following characteristics, illustrated in
Table 2:

G, (Pr~2000) < C,(Pr~0.71) < C,(Pr~6).

For example for the cube (edge up), C, for Pr ~ 6 is
approximately 6% higher than the C, for Pr~ 0.71
and almost 30% higher than the C, for Pr ~ 2000. A
similar trend can be observed for C, for a sphere. The
magnitude of the effect of the Prandtl number, shows
up in the predictions shown in Figs. 5 and 6, and to
some extent, in the experimental data. Figure 5 shows
the experimental data of several workers for a sphere
for a Prandtl number range of 0.71 < Pr < 1800. The
data of Schmidt [8] using alcohol and water
(5.8 < Pr < 14) show very good agreement with pre-
dictions of equation (1), the r.m.s. difference between
the experimental data and the predictions being less
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F1G. 1. Comparison of the experimental data and the predictions for a tetrahedron.
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Fi1G. 4. Comparison of the experimental data and the

than 8%. The data of Schutz [10] for Pr ~ 1800 is
in good agreement with equation (1) with an r.m.s.
difference of less than 7%. But the experimental data
of Kutateladze [9] for Pr ~ 0.71 are generally higher
than the predicted results with an r.m.s. difference of
15%. So the experimental data do not unambiguously
show the expected trend with Pr; Kutateladze’s data
for air almost coincides with Schmidt’s data for water.
It may be that the error, involved in the experiments

predictions for a cube in three different orientations.

of Kutateladze [9] causes his data to be consistently
high (see Churchill [11] for a detailed study for
spheres). Figure 6 shows the experimental data of
Weber er al. [2], Sparrow and Stretton [4], and
Chamberlain er al. [3] for the cube (edge up) for
different Prandt! numbers. The agreement between
the experimental data and the predictions of equation
(1) is very good for all cases, with r.m.s. differences
of less than 7%. Unfortunately, however, the exper-
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F16. 6. The effect of Prandtl number on heat transfer from a cube with its edge up.

imental ranges of the Rayleigh number are not
sufficient to properly evaluate the agreement with the
expected trend.

CONCLUSIONS

The equation developed by Hassani and Hollands
[5] from the earlier work of Raithby and Hollands
has been extended to cover a wide range of Prandtl
numbers: 0.71 € Pr < 2000. The predictions of this
correlation had already been verified by Hassani and
Hollands for various shapes over a Rayleigh number
range of 10 < Ra < 10° for Pr ~ 0.71. This work has
compared the predictions with the experimental data
of Astrauskas [1], Weber er al. [2], Sparrow and
Stretton [4], and Schmidt [8] for various geometries
over 10°< Ra < 10'* for Pr~ 2000 and 5.8 < Pr
< 14. The agreement between the predictions
and the experimental data is very good and r.m.s.
differences of less than 10% are observed in all cases.
A need for more experimental data at intermediate

Prandtl numbers and high Rayleigh numbers is
indicated.
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EFFET DU NOMBRE DE PRANDTL SUR LA CONVECTION THERMIQUE
NATURELLE EXTERNE AUTOUR DE CORPS TRIDIMENSIONNELS
IRREGULIERS

Résumé-—-Une formule développée antérieurement pour prédire le transfert de chaleur par convection

naturelle autour de corps tridimensionnels de forme arbitraire est étendue pour couvrir un plus large

domaine de nombre de Prandtl 0,71 < Pr < 2000. Les prédictions de ces expressions sont comparées aux

données expérimentales de plusieurs auteurs dans le domaine 10° < Ra < 10'%, pour des nombres de

Prandtl de 10 4 2000. L’accord est trés bon avec des moyennes quadratiques de différences inférieures a
10% dans tous les cas.

DER EINFLUSS DER PRANDTL-ZAHL AUF DEN WARMEUBERGANG AN DER
AUSSENSEITE EINES UNREGELMASSIGEN DREIDIMENSIONALEN KORPERS

Zusammenfassung—In der vorliegenden Arbeit wird ein kiirzlich entwickelter allgemeiner Ausdruck fiir die
Berechnung des Wirmeiibergangs durch natiirliche Konvektion an der AuBenseite eines dreidimensionalen
Korpers beliebiger Form so erweitert, daB nun Prandtl-Zahlen zwischen 0,71 und 2000 abgedeckt werden
kOnnen. Die Ergebnisse derartiger Berechnungen werden mit experimentellen Daten unterschiedlicher
Herkunft im Bereich 10° < Ra < 10"* und 10 < Pr < 2000 verglichen. Die Ubereinstimmung zwischen
MeB- und Rechenwerten ist sehr gut, die r.m.s.-Abweichung ist in allen Fillen kleiner als 10%.

BJIMSIHHUE YMCJIA IPAHATHA HA BHEIHWN CBOBOJHOKOHBEKTHBHbIM
TETUIONEPEHOC OT TPEXMEPHBIX TEA HEIPABIWJIBHOH ®OPMBI

Amnoraims—IIpeioxkeHHOE paHee BBHIPAXCHHE [NIA PacyeTa BHEUIHEro CBOGOIHOKOHBEKTHBHOTO Tell-
JIOTIEPEHOCA OT TPEXMEPHBIX TeJI NMPoM3sosaAbHOH $opmsl 06obuiaeTca wa Gosiee wMpoxnii AwanasoH
uucen Ipanaras 0,71 < Pr < 2000. TlosnyueHHBE ¢ NOMOUIBIO 3TOrC BHIPAXKCHUN Pe3Y/IbTATHI CPABHH-
BAIOTCH ¢ SKCHEPHMEHTAILHBIMHE JaHHEIMH HECKOJBLKRX HCCAeaoBaTeneli B uHTepBane wcen Panes ot
10° o 10'3, coorseTcTRyIONIEM NPHGIMIETENLHO HI3MeHeHwio yrcna IpanarTas or 10 o 2000. Cpexn-
HEKBAZIPATHYHLIC OTKIOHCHHA DPACYCTHBHIX 3HAYCHHH OT JKCIIEPHMEHTAIBHBIX BO BCEX CIOYYasx coc-
TaBJmoT MeHee 10%, 4TO yKasbBaeT Ha OY9€Hb XOPOLIEe COrJIacHe TEOPHH C SKCIIEPAMEHTOM.



